10ºA 08.15 às 10.05
Sumário: Exercício de consolidação de aprendizagens.
Exercícios de Colocação de Pontos em Planos, de Sólidos, de PARALELISMOS e PERPENDICULARIDADES.
EXERCÍCIO de PONTOS existentes em PLANOS:
Determine as projeções de um plano Alfa sabendo que:
· O ponto A (0; 3; 3) é um ponto comum a duas retas r e p do plano Alfa;
· A reta p é de perfil e contém um Ponto B com 6 de afastamento e 6 cm de cota;
· A reta r pertence ao Beta 1.3. e faz 30º (a.e) com a linha X na sua projeção horizontal;
Determine as projeções de um Ponto S com abcissa igual a 6 cm e com 5 cm de afastamento, contido no Plano Alfa.
EXERCÍCIO de SÓLIDO:
Determine as projeções de uma pirâmide pentagonal oblíqua de base horizontal, sabendo que:
· O ponto O (4; 6; 8) é o centro do pentágono da base, e o ponto A (0; 2; 8) é um dos vértices do pentágono [ABCDE] da base do sólido.
· O vértice V (6; 6; 0) é o ponto de menor cota da pirâmide;
EXERCÍCIO - Paralelismo
Considerando um plano oblíquo, desenha uma reta horizontal h,
Considerando um plano oblíquo, desenha uma reta horizontal h,
paralela a esse plano, sabendo que
- o plano oblíquo contém a reta r
- a reta r é definida por A (0; 3; 2) e B (4; -4; 4)
- o plano oblíquo contém a reta r
- a reta r é definida por A (0; 3; 2) e B (4; -4; 4)
- o traço frontal do plano faz, com o eixo x, um ângulo de 60º (a.p.e.)
- a reta h contém o ponto P (-3; 2; 6)
(adaptado de um ex. de exame nacional de DGD-B)
EXERCÍCIO - Perpendicularidade entre um plano e uma reta
- Determine um plano Lambda perpendicular a uma reta reta r sabendo que:
- A reta r contém o ponto A(-3;6;4), fazendo as suas projeções
- Determine um plano Lambda perpendicular a uma reta reta r sabendo que:
- A reta r contém o ponto A(-3;6;4), fazendo as suas projeções
frontal e horizontal 35º (a.d.) e 50º (a.d.) respetivamente;
- O plano Lambda contém o ponto L (2; 3; -4);
- O plano Lambda contém o ponto L (2; 3; -4);
Sem comentários:
Enviar um comentário